Inhibition of Aluminium Corrosion in 1M HCl by Pyridoxine Hydrochloride: Thermodynamic and Quantum Chemical Studies

Mamadou Yeo\(^1\), Mougo André Tigori\(^2\)*, Amadou Kouyaté\(^2\), Paulin Marius Niamien\(^1\) and Albert Trokourey\(^1\)

\(^1\)Laboratoire de Constitution et de Réaction de la Matière, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire.
\(^2\)UFR Environnement, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d'Ivoire.

Authors’ contributions

This work was carried out in collaboration among all authors. Author MY designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors MAT and AK managed the literature searches and the analyses of the study. Authors PMN and AT supervised the work and instructed all the research. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IRJPAC/2020/v21i2130286

Editors:
(1) Dr. Bengi Uslu, Ankara University, Turkey.

Reviewers:
(1) Alejandra Silvina Román, Universidad Nacional de Misiones, Argentina.
(2) Vera Rosa Capelossi, State University of Santa Cruz, Brazil.
(3) Elkhotfi Yassine, Morocco.

Complete Peer review History: http://www.sdiarticle4.com/review-history/62778

ABSTRACT

Currently, research in the area of corrosion inhibition is focussed on the development of green corrosion inhibitors. It is with this in mind that pyridoxine hydrochloride, which is vitamin B6, has been tested as a corrosion inhibitor of aluminium in 1M HCl by mass loss, Density Functional Theory (DFT) and Quantitative Structure-Property Relationship (QSPR) methods. The results obtained show that the inhibition efficiency increases with concentration but decreases with increasing temperature. This vitamin is adsorbed on aluminium according to the modified Langmuir isotherm and occurs in two modes: physisorption and chemisorption. Thermodynamic adsorption and activation parameters have been determined and discussed. Finally, QSPR approach was used to find the best set of parameters in order to determine the theoretical inhibition efficiencies from the experimental data. Experimental measurements were found in good collaboration with the theoretical results.

Corresponding author: E-mail: tigori20@yahoo.fr;
Keywords: Corrosion inhibition; aluminium; pyridoxine hydrochloride; mass loss; density functional theory; quantitative structure-property relationship.

1. INTRODUCTION

The use of light metals in the automotive industry and other sectors has become a solution for saving fuel [1] and reducing greenhouse gases. Among light metals, aluminium is the most widely used because of its many outstanding properties. This massive use of aluminium exposes it to the corrosion phenomenon. Corrosion is a chemical or electrochemical reaction with all kinds of materials (metals, ceramics, polymers etc.) in variable environments (aqueous atmosphere, high temperatures etc.) and leads to a degradation of the material and its properties. Indeed, during its use, aluminium is covered with oxide or scale and to remove this oxide, the metal part is immersed in an appropriate acid solution, called an acid pickling bath. The acid solution attacks and dissolves the scale or part of the metal, which eventually renders the metal part unusable [2].

The current trend to reduce this phenomenon is the use of eco-friendly organic corrosion inhibitors [3-8]. Applications of these inhibitors play a major role in environmental protection because they are less toxic and biodegradable [9-12]. They have heteroatoms and π bonds that would facilitate their adsorption on the metal surface [13-15]. Vitamin B6 or pyridoxine hydrochloride (Fig. 1) has been used as a corrosion inhibitor in this work because it contains heteroatoms (oxygen and nitrogen) that can facilitate its adsorption on the aluminium surface and it is eco-friendly and non-toxic. Moreover, the adsorption process of an organic inhibitor on the metal surface is explained by kinetic and thermodynamic parameters are useful tools. These parameters permit to specify whether the adsorption process is endothermic or exothermic and to indicate the nature of this adsorption [15-19].

The advent of chemical calculations using density functional theory (DFT) at B3LYP/6-31G(d) level allows to calculate the electronic parameters of a molecular system with a very high degree of accuracy [20-23]. These parameters are then used to estimate the binding tendency of various inhibitory molecules on the metal surface, thus the inhibition efficiency. In addition, quantitative structure-property relationship (QSPR) method is used to correlate the experimental inhibition efficiency with the inhibition properties of the molecule studied in 1M hydrochloric acid solution. According to some authors [24-27], QSPR concept can be used to relate the inhibition efficiency of most organic inhibitors to their structural parameters.

The objective of the present study is to evaluate, on the one hand, the kinetic parameters of aluminium dissolution and the thermodynamic parameters of pyridoxine hydrochloride or adsorption on the aluminium surface and, on the other hand, to establish a relationship between the chemical parameters of the studied compound and the experimental inhibition efficiency.

![Molecular structure of pyridoxine hydrochloride (PHC)](image-url)
2. MATERIALS AND METHODS

2.1 Materials

Hydrochloric acid solution with purity 37% and acetone with purity 99.5% used in this work were purchased from MERCK. Analytical grade pyridoxine hydrochloride (Fig. 1) purchased from SIGMA ALDRICH was used to prepare solutions of concentrations range from 0.13 to 0.53 mM. Aluminium samples of 99.5% purity were in the form of a rod measuring 10 mm in length and 2 mm in diameter. A precision balance from STARTORIUS was used to weigh the samples. The samples were dried in a proofer from MEMMERT. The temperature was controlled by a thermostat water bath from MEMMERT.

2.2 Mass Loss Measurements

These samples were successively polished with metallographic emery paper having an increasing fineness of different grains (40, 80, 240 and 600) and cleaned with acetone, washed with double distilled water and dried in a proofer. After being weighed, the samples were introduced into the 1M hydrochloric acid solution test in the absence or presence of different concentrations of pyridoxine hydrochloride which are 0.13mM, 0.27mM and 0.53mM. In order to evaluate corrosion as a function of temperature, a water thermostat was used to control and maintain the temperature in the range of 298K to 323K. After one hour of immersion, sufficient time to evaluate the inhibitor performance, the samples were removed from the solution, washed with a bristle brush under double distilled water to remove corrosion product, dried and weighed. The tests were performed in aerated solutions and were carried out in triplicate to ensure reliable results. Indeed, this technique, which allows the effective study of mass loss, is in line with other corrosion monitoring techniques such as electrochemical methods and surface analysis techniques.

The mass loss obtained permit to calculate the corrosion rates (W), the degree of surface coverage (θ) and the inhibition efficiency IE (%) using the following expressions:

\[
W = \frac{\Delta m}{S_e \cdot t} = \frac{m_1 - m_2}{S_e \cdot t}
\]

\[
\theta = \frac{W_0 - W}{W_0}
\]

\[
IE(\%) = \frac{W_0 - W}{W_0} \times 100
\]

Δm: is the mass loss (g) m₁ and m₂ are respectively, the weight (g) before and after immersion in the solution test; t: the immersion time (h) ; S_e : the total surface of sample (cm²) ; W₀ and W : are respectively the corrosion rates of aluminium in the absence and presence of pyridoxine hydrochloride.

2.3 Theory and Computational Details

2.3.1 Density Functional Theory (DFT) method

Density functional theory (DFT) is an application incorporated in the commercial software (Gaussian). Quantum chemical calculations were carried out by Gaussian 03 software [28]. These theoretical calculations were used to find the relationship between the molecular structure of pyridoxine hydrochloride and its inhibition efficiencies. This application has permitted to optimize the geometry of the studied compounds (Fig. 2) at B3LYP level, with 6-31G(d) basis set [29,30].

Fig. 2. Optimized structure of pyridoxine hydrochloride with B3LYP/6-31G (d)
The corresponding quantum chemical parameters including the global parameters such as the highest occupied molecular orbital energy \(E_{\text{HOMO}}\), the lowest unoccupied molecular orbital energy \(E_{\text{LUMO}}\), energy gap \(\Delta E\), dipole moment \(\mu\), the electron affinity (A), the ionization energy \(I\), the electronegativity \(\chi\), the hardness \(\eta\), the softness \(\sigma\), the electrophilicity index \(\omega\), the fraction of electron transferred \(\Delta N\), total energy \(E_T\). Local parameters such as Fukui function \(f_k^+\) or \(f_k^-\) and dual descriptor \(\Delta f_k^+\) or \(\Delta f_k^-\) will be useful to predict the reactivity sites [31]. These parameters can be calculated according to the following expressions [32-34]:

\[
\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}}
\]

\[
I = -E_{\text{HOMO}}
\]

\[
A = -E_{\text{LUMO}}
\]

\[
\chi = -\mu_p = \left(\frac{\partial E}{\partial N}\right)_{\nu(r)}
\]

\[
\chi = \frac{I + A}{2}
\]

\[
\eta = \frac{I - A}{2}
\]

\[
\sigma = \frac{1}{\eta} = \frac{2}{I - A}
\]

\[
\omega = \frac{(I + A)^2}{2(\mu_p + \eta)}
\]

\[
\Delta N = \Phi_{Al} - X_i
\]

Where \(\Phi_{Al} = 4.28 \text{ eV}\) and the hardness of aluminium \(\eta_{Al} = 0\) [35], \(X_i\) and denote the electronegativity and the \(\eta_{inh}\) hardness of the inhibitor molecule.

Fukui function measures local reactivity. This function is considered as the first derivative of electronic density \(\rho(r)\) with respect to the number of electrons \(N\) at a constant external \(\nu(r)\) [36]. Using a scheme of finite difference approximations, this procedure condenses the values around each atomic site into a single value that characterizes the atom in the molecule the values around each atomic site into a single value that characterizes the atom in the molecule [37,38].

\[
f_k = \left(\frac{\partial \rho(r)}{\partial N}\right)_{\nu(r)}
\]

\[
f_k^+ = [q_k(N + 1) - q_k(N)](\text{For nucleophilic attack})
\]

\[
f_k^- = [q_k(N) - q_k(N - 1)](\text{For electrophilic attack})
\]

Where \(q_k(N + 1)\), \(q_k(N)\) and \(q_k(N - 1)\) are the electronic population of atom \(k\) in \((N + 1)\), \(N\) and \((N - 1)\) electrons systems.

The dual descriptor recently introduced by some authors [39,40] allows to efficiently locate the probable sites of nucleophilic and electrophilic attack. The condensed form of the dual descriptor can be computed using the following equation:

\[
\Delta f_k(r) = f_k^+ - f_k^-
\]

If \(\Delta f_k(r) > 0\), the process is driven by a nucleophilic attack, and the atom \(k\) acts as an electrophile, for \(\Delta f_k(r) < 0\) the process is driven by an electrophilic attack and the atom \(k\) acts as a nucleophile.

2.3.2 Quantitative Structure-Property Relationship (QSPR) method

QSPR has also been used to correlate the experimental inhibition efficiency with quantum chemical parameters. This approach provides mathematical relationships that indicate correlations between some sets of descriptors and the corrosion performance of a molecule and provides clear direction on the selection of new inhibitors to guide research [41]. We will apply the non-linear multivariate model proposed by Lukovits et al to study the interactions between corrosion inhibitors and metal surfaces in 1M HCl. This model [42] is represented by the relation:

\[
IE_{\text{calc}}(\%) = \frac{[Ax_f + b]c_i}{1 + [Ax_f + b]c_i} \times 100
\]

In this case, \(C_i\) represents the different concentrations for the inhibitor, which are 130\(\mu M\), 180\(\mu M\), 270\(\mu M\) and 530\(\mu M\), \(A\) and \(B\) are real constants which will be determined when solving the system of equations. We tested sets of three parameters \((X_1, X_2, X_3)\). Then the equation becoming:

\[
IE_{\text{calc}}(\%) = \frac{[Ax_1 + bX_2 + bX_3 + E]c_i}{1 + [Ax_1 + bX_2 + bX_3 + E]c_i} \times 100
\]

This equation allows us to have a system of four equations with four unknowns \(A, B, D\) and \(E\). It is thus a question of finding for the molecule the set
of coefficients A, B, D and E which permits to obtain the value of the inhibition efficiency closest to the experimental value. The calculations were carried out using the EXCEL software.

3. RESULTS AND DISCUSSION

3.1 Effect of Temperature and Inhibitor Concentration on the Corrosion Process

Fig. 3 gives the effect concentration and temperature on corrosion rate of aluminium. Fig. 3 shows clearly that the corrosion rate of aluminium increases with temperature, but decreases with increasing inhibitor concentration. This indicates that the addition of pyridoxine hydrochloride in the corrosive medium HCl 1M delays the corrosion of aluminium even if the presence of chloride ions favors the corrosion trend on the metal surface. Indeed the inhibitor acts as a physical barrier between the aluminium and the corrosive medium, this barrier is more reinforced when the inhibitor concentration increases. Similar results have been found in the literature [43,44].

The evolution of inhibition efficiency as a function of temperature for different concentrations is shown in Fig. 4.

![Fig. 3. Variation of corrosion rate as a function of temperatures at different concentrations](image1)

![Fig. 4. Inhibition efficiency versus temperatures for different concentrations](image2)
Inspection of the Fig. 4 reveals that the inhibition efficiency of pyridoxine hydrochloride decreases with increasing temperature and increases with concentration. We observe for Cinh= 0.53mM: IE(%)= 90.56 at 298K and IE(%)= 73.86 at 323K. Moreover this observation can also be explained by the increased solubility of the protective film that includes the inhibitor and corrosion products initially precipitated on the metal surface [45], which progressively exposes the metal surface to the attacks of the aggressive medium as the temperature increases.

3.2 Effect of Immersion Time on Inhibition Efficiency

In order to study the inhibition efficiency of pyridoxine as time changes, the aluminium samples were immersed in hydrochloric acid solutions of concentration 1M, with and without addition of pyridoxine hydrochloride of concentration 0.53mM at the temperature of 298K for immersion times which are 30min, 60min, 90min, 120 min, 150min, 180 min, 210min, 240 min and 270min. Fig. 5 shows the evolution of inhibition efficiency as a function of immersion time.

The results obtained show that the inhibition efficiency decreases progressively with increasing immersion time and tends to stabilize between 180min and 270min, which is consistent with those found in previous studies for shorter durations [46]. These results reveal that pyridoxine hydrochloride creates in the first instance a strong barrier by giving electrons to the aluminium to isolate it from the corrosive environment. This barrier progressively decreases before stabilizing to ensure minimal protection of the metal. We can therefore deduce that for long immersion times, the adsorbed inhibitor molecules desorb little.

3.3 Adsorption Isotherm

Adsorption isotherms provide valuable basic information on the interaction between the inhibitor and the metal surface as well as the adsorption mechanism which depends on the electronic characteristics of the inhibitor, the metal nature, the surface and the temperature. The general form [47] of these isotherms is given by the relationship:

$$f(\theta, x) \exp \exp (-g\theta) = K_{ads}C_{inh}$$

Where, $f(\theta, x)$ is the configurational factor subject to the physical model and assumptions involved in the derivation of the isotherms, C_{inh} is the inhibitor concentration, θ is the surface coverage, K_{ads} is the equilibrium constant of the adsorption process and g is a parameter that expresses the interaction of the molecules in the adsorbed layer.

![Fig. 5. Inhibition efficiency as a function of immersion time](image-url)
Experimental data have been applied on different adsorption isotherms (Langmuir, El-Awady and Flory-Huggins) whose different equations are as follows:

- **Langmuir isotherm**: \(\frac{C_{\text{inh}}}{\theta} = \frac{1}{K_{\text{ads}}} + C_{\text{inh}} \) (20)

- **El-Awady isotherm**: \(\log \left(\frac{\theta}{1-\theta} \right) = \log K_{\text{ads}} + x \log(1-\theta) \) (21)

- **Flory-Huggins isotherm**: \(\log \left(\frac{C_{\text{inh}}}{\theta} \right) = \log K_{\text{ads}} + x \log(1-\theta) \) (22)

Figs. 6, 7 and 8 present the study of these models.

The different parameters of the straight lines are listed in Table 1.

Fig. 6. Langmuir adsorption isotherm for the investigated molecule at different temperatures

Fig. 7. El-Awady adsorption isotherm for the investigated molecule at different temperatures
A careful analysis of Table 1 clearly shows that the Langmuir isotherm has correlation coefficients closer to unity. Therefore, this adsorption isotherm proved to be the best description of the inhibitor studied. Langmuir adsorption model assumes the existence of a fixed number of energetically identical sites on the surface. Each site can adsorb only one particle. Whereas El-Awady isotherm study shows that each pyridoxine hydrochloride molecule occupies more than one active site because $1/y > 1$ or y is the slope of each line obtained. The slopes of the straight lines obtained with Langmuir isotherm are greater than one, which reveals the presence of interactions between the adsorbate species on the metal surface as well as changes in the heat of adsorption with increasing coverage [48]. Although having the correlation coefficients closer to unity this isotherm cannot be strictly applied. The adsorption of pyridoxine hydrochloride can be more appropriately represented by the modified Langmuir equation or Villamil isotherm [48].
\[\frac{C_{inh}}{\theta} = n_k - nC_{inh} \]

(23)

3.4 Thermodynamic Adsorption Parameters

The adsorption constant \(K_{ads}\) determined from the modified Langmuir isotherm equation allows to calculate the variation of the standard free energy of adsorption \(\Delta G_{ads}^0\) [50] through the following equation:

\[\Delta G_{ads}^0 = -RT\ln(55.5 K_{ads}) \]

(24)

Where \(T\) is the absolute temperature, \(R\) is the perfect gas constant and 55.5 is the concentration of water in solution [51] expressed in mol. L\(^{-1}\).

The adsorption enthalpy \(\Delta H_{ads}^0\) and adsorption entropy \(\Delta S_{ads}^0\), were also calculated using the following equation:

\[\Delta G_{ads}^0 = \Delta H_{ads}^0 - T\Delta S_{ads}^0 \]

(25)

\(\Delta S_{ads}^0\) and \(\Delta H_{ads}^0\) are respectively the slope and the intercept of the straight line obtained when representing \(\Delta G_{ads}^0\) in function of the temperature (Fig. 9).

The values of \(K_{ads}, \Delta G_{ads}^0, \Delta H_{ads}^0\) and \(\Delta S_{ads}^0\) are listed in Table 2.

Generally values of \(\Delta G_{ads}^0\) around -20 kJ.mol\(^{-1}\) or higher are consistent with physisorption while values more negative than -40 kJ.mol\(^{-1}\) are related to chemisorption [52,53]. The negative values of \(\Delta H_{ads}^0\) indicate that the adsorption of the inhibitor is an exothermic process implies two adsorption modes; chemisorption and physisorption while the positive sign of \(\Delta S_{ads}^0\) reflects that the disorder increases probably due to desorption of water molecules [54].

In order to distinguish between physisorption and chemisorption, experimental data were fitted to Adejo – Ekwenchi isotherm [55] which is described by the following equation:

\[\log \left(\frac{1}{1-\theta} \right) = \log K_{AE} + b \log C_{inh} \]

(26)

Where \(C_{inh}\) is the concentration of the adsorbate, \(K_{AE}\) and \(b\) are the isotherm parameters. Fig. 10 gives the plots of \(\log \left(\frac{1}{1-\theta} \right)\) versus \(\log C_{inh}\).

![Graph showing variation of \(\Delta G_{ads}^0\) as a function of temperature](image)

Fig. 9. Variation of \(\Delta G_{ads}^0\) as a function of temperature

Table 2. Thermodynamic parameters of PHC adsorption on aluminium in 1M HCl

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>(K_{ads}(M^\text{M}^{-1}))</th>
<th>(\Delta G_{ads}^0\text{ (kJ. mol}^{-1})</th>
<th>(\Delta H_{ads}^0\text{ (kJ.mol}^{-1})</th>
<th>(\Delta S_{ads}^0\text{ (J. mol}^{-1}\text{. K}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>23041</td>
<td>-34.9</td>
<td>-23.38</td>
<td>38.00</td>
</tr>
<tr>
<td>303</td>
<td>19646</td>
<td>-35.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>16077</td>
<td>-35.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>14881</td>
<td>-35.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>13298</td>
<td>-35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>10929</td>
<td>-35.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The parameters of the straight lines are gathered in Table 3.

Analysing the Table 3 shows that parameter b decreases from 298K to 313K, indicating the physisorption in this temperature range. From 318K to 323K, the parameter b is practically constant and shows that the adsorption of pyridoxine hydrochloride occurs chemically (chemisorption) [56]. We can conclude that the molecule studied adsorbs on aluminum according to two adsorption modes: physisorption and chemisorption with predominance of physisorption. Finally, we note that physisorption is carried out at relatively low temperatures, contrary to chemisorption, which is carried out at high temperatures.

3.5 Activation Parameters

The activation energy of the aluminium dissolution reaction can be determined by the Arrhenius relation:

$$W = A \cdot \exp \left(-\frac{E_a}{RT} \right)$$ \hspace{1cm} (27)

Where W is the corrosion rate in the presence of inhibitor, E_a the apparent activation energy of the corrosion process, R the universal gas constant, and A is the frequency factor, T is the absolute temperature. Fig. 11 gives the representation of logW as a function of the inverse of temperature.

The slope ($-\frac{E_a}{2.3R}$) of each the straight line obtained is used to determine the activation energy.

Eyring transition state equation was used to calculate the variations of activation enthalpy ΔH^*_a and activation entropy ΔS^*_a.

$$\log \left(\frac{W}{T} \right) = \log \left(\frac{R}{Nh} \right) + \frac{\Delta S^*_a}{2.3 \cdot R} - \frac{\Delta H^*_a}{2.3 \cdot RT}$$ \hspace{1cm} (28)

Where h the Planck constant, N the Avogadro number.

Indeed, the representation of $\log \left(\frac{W}{T} \right)$ as a function of $1/T$ for different pyridoxine hydrochloride concentrations (Fig. 12) gives straight lines whose slopes are $-\frac{\Delta H^*_a}{2.3 \cdot R}$ and the intercepts $\log \left(\frac{R}{Nh} \right) + \frac{\Delta S^*_a}{2.3 \cdot R}$ allow to deduce respectively the variations of enthalpy activation (ΔH^*_a) and entropy activation (ΔS^*_a). The values of the activation parameters are recorded in the Table 4.
Fig. 11. Arrhenius plot for different concentrations of PHC in 1M HCl

Fig. 12. Transition state plots for different concentrations of PHC in 1M HCl

Table 4. Activation parameters of aluminium in 1M HCl without and with PHC

<table>
<thead>
<tr>
<th>C_{inh} (mM)</th>
<th>E_a (kJ mol^{-1})</th>
<th>\Delta H^*_a (kJ mol^{-1})</th>
<th>\Delta S^*_a (J mol^{-1} K^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>81.05</td>
<td>78.60</td>
<td>-24.20</td>
</tr>
<tr>
<td>0.13</td>
<td>99.19</td>
<td>96.70</td>
<td>26.00</td>
</tr>
<tr>
<td>0.18</td>
<td>106.39</td>
<td>103.90</td>
<td>47.70</td>
</tr>
<tr>
<td>0.27</td>
<td>113.03</td>
<td>110.60</td>
<td>67.10</td>
</tr>
<tr>
<td>0.53</td>
<td>120.75</td>
<td>118.20</td>
<td>89.10</td>
</tr>
</tbody>
</table>
The activation energy \((E_a) \) values in the inhibited solutions are higher than that in the uninhibited solution (blank), indicating that physical adsorption is predominant [57]. Indeed physisorption, involves electrostatic forces between ionic charges or dipoles on the adsorbed species and the electric charge at the metal/solution interface. Thus the inhibitor is adsorbed on the aluminium by electrostatic bonds. These bonds are weak and sensitive to high temperature. Therefore, the inhibition efficiency of the studied molecule decreases with increasing temperature. This explains the high inhibition efficiencies obtained at low temperatures. In summary, the protection becomes weak with increasing temperature, resulting in low electronic exchanges between the inhibitor and the aluminium at high temperature. The values of the change in enthalpy of dissolution \((\Delta H^\circ) \) are positive, indicating that the dissolution of aluminium is an endothermic process [58]. These values also increase as the concentration of pyridoxine hydrochloride increases. This indicates that in its presence aluminium offers a high resistance to corrosion. The positive sign of \(\Delta S^\circ \), in presence of pyridoxine hydrochloride indicates an increase in the disorder, probably due to desorption of the adsorbed species, suggesting that the activated complex is dissociation rather than an association.

3.6 Quantum Chemical Assessment

For analysing the inhibitor properties in order to describe the inhibition mechanism, density functional theory (DFT) has been used. So quantum chemical parameters chemical has been calculated by using this theory. The values are recorded in Table 5.

Table 5. Quantum Chemical parameters for PHC obtained with DFT at B3LYP/6-31G (d)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{\text{HOMO}}) (eV)</td>
<td>-6.114</td>
</tr>
<tr>
<td>(E_{\text{LUMO}}) (eV)</td>
<td>-0.648</td>
</tr>
<tr>
<td>Energy gap (\Delta E) (eV)</td>
<td>5.466</td>
</tr>
<tr>
<td>Dipole moment (\mu) (D)</td>
<td>2.146</td>
</tr>
<tr>
<td>Ionization energy (I) (eV)</td>
<td>6.114</td>
</tr>
<tr>
<td>Electron affinity (A) (eV)</td>
<td>0.648</td>
</tr>
<tr>
<td>Electronegativity (\chi) (eV)</td>
<td>3.381</td>
</tr>
<tr>
<td>Hardness (\eta) (eV)</td>
<td>2.733</td>
</tr>
<tr>
<td>Softness (\sigma) (eV)(^{-1})</td>
<td>0.366</td>
</tr>
<tr>
<td>Fraction of electron transferred (\Delta N)</td>
<td>0.164</td>
</tr>
<tr>
<td>Electrophilicity index (\omega)</td>
<td>2.091</td>
</tr>
<tr>
<td>Total energy (E_T) (Ha)</td>
<td>-591.86</td>
</tr>
</tbody>
</table>

\(E_{\text{HOMO}} \) value indicates the ability of an organic compound to donate electrons to the metal surface, high \(E_{\text{HOMO}} \) value of a compound, enhances his ability to inhibit metal corrosion, by forming an inhibitor barrier, whereas lower \(E_{\text{LUMO}} \) value indicates the molecule to be more susceptible towards accepting electrons [59]. Energy gap \((\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}}) \), is used to interpret the reactivity of a molecule, because a molecule with a low energy gap value is a good inhibitor [60]. The values of these indicators obtained confirm the good performance of pyridoxine hydrochloride in exchanging electrons with aluminium. The electron densities of the frontier molecular orbitals LUMO and HOMO, were presented in Fig. 13.

![Fig. 13. (a) HOMO and (b) LUMO orbitals of PHC](image-url)
In general, according to the literature, there is no significant relationship between the value of dipole moment and the efficiency of inhibition [61,62].

Ionization energy (I) and electron affinity (A), which are respectively associated with the HOMO and LUMO energies, are fundamental descriptors of the chemical reactivity of a molecule. A high ionization energy [63] indicates that the molecule is stable and inert to any chemical reaction, while a low ionization energy indicates that the molecule is reactive. The low ionization energy of pyridoxine hydrochloride indicates its high inhibition efficiency obtained experimentally.

Hardness (η) and softness (σ) parameters are the basic chemical concepts, called global reactivity descriptors which have been theoretically justified within the framework of DFT. A hard molecule has a large energy gap and has the capacity to receive electrons. A soft molecule has a small gap [63]. Soft molecules are more reactive than hard ones because they can easily offer electrons to an appropriate acceptor. In our study the value low hardness (η=2.733 eV) indicates that pyridoxine hydrochloride is a soft molecule, in this case it adsorbs easily to the aluminium surface creating a protective film to reduce corrosion, which justifies the experimental results.

According to Lukovits study [42], if the value of the transferred electrons (ΔN) of an inhibitor is less than 3.6, the inhibition efficiency increases through the increase of electron-donating ability to the metal surface. In our work the fraction of electron transferred (ΔN) of pyridoxine hydrochloride is less than 3.6. This explains the capacity of pyridoxine hydrochloride to donate electrons increases its inhibition efficiency, which confirms the experimental data.

The electrophilicity index (ω) measures the propensity of chemical species to accept and give electrons [34]. The value of the electrophilic index (2.091 eV) and electrons transferred (ΔN=0.164) are high, which shows that the molecule has the capacity to receive electrons. Pyridoxine hydrochloride can receive electrons from aluminium, which would enhance the adsorption of the inhibitor to the metal surface.

To better elucidate the reactivity sites, Fukui functions and dual descriptor have been investigated. These values are shown in Table 6 and have been used to locate with precision the probable sites for nucleophilic and electrophilic attacks. This localisation has given a good understanding of the interaction metal-molecule.

Table 6. Mulliken charges, Fukui functions and dual functions of PHC by B3LYP/6-31G (d)

<table>
<thead>
<tr>
<th>Atom</th>
<th>q_b(N - 1)</th>
<th>q_b(N)</th>
<th>q_b(N + 1)</th>
<th>f_b</th>
<th>f_b</th>
<th>Δf_b(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>0.236069</td>
<td>0.288969</td>
<td>0.353729</td>
<td>-0.0529</td>
<td>-0.06476</td>
<td>0.01186</td>
</tr>
<tr>
<td>2 C</td>
<td>0.219017</td>
<td>0.231385</td>
<td>0.276012</td>
<td>-0.012368</td>
<td>0.044627</td>
<td>0.032259</td>
</tr>
<tr>
<td>3 C</td>
<td>0.051792</td>
<td>0.120104</td>
<td>0.144883</td>
<td>-0.068312</td>
<td>0.024779</td>
<td>-0.043533</td>
</tr>
<tr>
<td>4 C</td>
<td>0.058206</td>
<td>0.059895</td>
<td>0.060096</td>
<td>-0.001618</td>
<td>0.000201</td>
<td>-0.001488</td>
</tr>
<tr>
<td>5 C</td>
<td>-0.043764</td>
<td>-0.008991</td>
<td>0.097297</td>
<td>-0.034773</td>
<td>0.106288</td>
<td>0.071515</td>
</tr>
<tr>
<td>6 H</td>
<td>0.078503</td>
<td>0.160543</td>
<td>0.244333</td>
<td>-0.08204</td>
<td>0.08379</td>
<td>0.00175</td>
</tr>
<tr>
<td>7 N</td>
<td>0.0578174</td>
<td>0.474674</td>
<td>0.419302</td>
<td>-0.1035</td>
<td>0.055372</td>
<td>-0.048128</td>
</tr>
<tr>
<td>8 C</td>
<td>-0.108619</td>
<td>-0.093484</td>
<td>0.10225</td>
<td>-0.015135</td>
<td>0.08766</td>
<td>-0.023901</td>
</tr>
<tr>
<td>9 H</td>
<td>0.099784</td>
<td>0.162052</td>
<td>0.218154</td>
<td>-0.062268</td>
<td>0.056102</td>
<td>-0.06166</td>
</tr>
<tr>
<td>10 H</td>
<td>0.075457</td>
<td>0.12849</td>
<td>0.193991</td>
<td>-0.053033</td>
<td>0.065501</td>
<td>0.012468</td>
</tr>
<tr>
<td>11 O</td>
<td>-0.627053</td>
<td>-0.620081</td>
<td>-0.597586</td>
<td>-0.006972</td>
<td>0.022495</td>
<td>0.015523</td>
</tr>
<tr>
<td>12 H</td>
<td>0.360253</td>
<td>0.39638</td>
<td>0.434592</td>
<td>-0.036127</td>
<td>0.038212</td>
<td>0.002085</td>
</tr>
<tr>
<td>13 O</td>
<td>-0.71783</td>
<td>-0.65737</td>
<td>-0.545016</td>
<td>-0.059859</td>
<td>0.112955</td>
<td>0.053096</td>
</tr>
<tr>
<td>14 H</td>
<td>0.393087</td>
<td>0.419222</td>
<td>0.465192</td>
<td>-0.026138</td>
<td>0.045967</td>
<td>0.016289</td>
</tr>
<tr>
<td>15 C</td>
<td>-0.184864</td>
<td>-0.13109</td>
<td>-0.115082</td>
<td>-0.051755</td>
<td>0.019027</td>
<td>-0.033728</td>
</tr>
<tr>
<td>16 H</td>
<td>0.096802</td>
<td>0.134921</td>
<td>0.182667</td>
<td>-0.03819</td>
<td>0.047746</td>
<td>0.006267</td>
</tr>
<tr>
<td>17 H</td>
<td>0.068734</td>
<td>0.167111</td>
<td>0.19279</td>
<td>-0.098377</td>
<td>0.025679</td>
<td>-0.072698</td>
</tr>
<tr>
<td>18 O</td>
<td>-0.618357</td>
<td>-0.61487</td>
<td>-0.610264</td>
<td>0.003487</td>
<td>0.004606</td>
<td>0.001119</td>
</tr>
<tr>
<td>19 H</td>
<td>0.288783</td>
<td>0.394261</td>
<td>0.429002</td>
<td>-0.105478</td>
<td>0.037474</td>
<td>-0.07037</td>
</tr>
<tr>
<td>20 C</td>
<td>-0.495424</td>
<td>-0.56803</td>
<td>-0.585012</td>
<td>0.072606</td>
<td>0.016982</td>
<td>0.055624</td>
</tr>
<tr>
<td>21 H</td>
<td>0.133278</td>
<td>0.15784</td>
<td>0.215456</td>
<td>0.024562</td>
<td>-0.057616</td>
<td>0.033054</td>
</tr>
<tr>
<td>22 H</td>
<td>0.109323</td>
<td>0.156287</td>
<td>0.21482</td>
<td>-0.046964</td>
<td>0.056533</td>
<td>0.011569</td>
</tr>
<tr>
<td>23 H</td>
<td>0.104999</td>
<td>0.19375</td>
<td>0.251499</td>
<td>-0.088751</td>
<td>0.057749</td>
<td>-0.031002</td>
</tr>
</tbody>
</table>
The most probable site for nucleophilic attacks is controlled by the atom with the highest value of f^*_k and $\Delta f_k(r)$ while the atom with the highest value of f_k^- and the lowest value of $\Delta f_k(r)$ controls the most probable site for electrophilic attacks. An examination of the Table 6, C (20) with the highest value of f^*_k and f_k^- is the nucleophilic and electrophilic attacks. According to the dual descriptor, C (5) and H (17) have respectively the highest and lowest of $\Delta f_k(r)$. Therefore C(5) is the nucleophilic attack centre and H (17) is the electrophilic attack centre. According to the literature [39,40] the dual descriptor is the only parameter which is able to unambiguously expose truly the nucleophilic and electrophilic regions. So, in summary C(2) and H(17) are respectively the nucleophilic and the electrophilic attacks centres.

3.7 Quantitative Structure-Property Relationship (QSPR) Consideration

In this investigation, QSPR has also been used to correlate the experimental inhibition efficiencies of the studied inhibitor and the quantum chemical parameters. We use the experimental inhibition efficiencies at 298K which are recorded in Table 7.

Table 7. Inhibition efficiencies of PHC at 298K for different concentrations

<table>
<thead>
<tr>
<th>Concentration(mM)</th>
<th>IE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>72.03</td>
</tr>
<tr>
<td>0.18</td>
<td>79.45</td>
</tr>
<tr>
<td>0.27</td>
<td>85.69</td>
</tr>
<tr>
<td>0.53</td>
<td>90.56</td>
</tr>
</tbody>
</table>

The constants calculated for the sets of parameters are listed in the Table 8.

Table 8. Values of coefficients A, B, D and E for different sets of parameters

<table>
<thead>
<tr>
<th>Set of parameters</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(E_{HOMO},E_{LUMO},\Delta E)$</td>
<td>-272.129</td>
<td>62.890</td>
<td>-166.389</td>
<td>-795.049</td>
</tr>
<tr>
<td>$(\Delta E,\mu, \sigma)$</td>
<td>-123.781</td>
<td>-88.069</td>
<td>489.837</td>
<td>686.318</td>
</tr>
<tr>
<td>$(\Delta E,\mu, \eta)$</td>
<td>-519.93</td>
<td>-2121.475</td>
<td>-509.504</td>
<td>4495.118</td>
</tr>
<tr>
<td>$(E_{HOMO},\Delta N, \chi)$</td>
<td>-4.976</td>
<td>-326.305</td>
<td>-8.294</td>
<td>51.151</td>
</tr>
</tbody>
</table>

The corresponding representative plots of the correlation between calculated and experimental efficiencies of PHC for different sets of parameters are shown in Fig. 14.

Statistical indicators were used to determine the best set of parameters to correlate experimental and theoretical inhibition efficiencies. These indicators are calculated from the following equations.

The Sum of Square Errors (SSE):

$$SSE = \sum_{i=1}^{N} (I_{E_{exp}} - I_{E_{calc}})^2$$

(29)

The Root Mean Square Error (RMSE):

$$RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N} (I_{E_{exp}} - I_{E_{calc}})^2}$$

(30)

The Mean Percent Deviation (MPD):

$$MPD = \frac{1}{N}\sum_{i=1}^{N} \left| \frac{I_{E_{exp}} - I_{E_{calc}}}{I_{E_{exp}}} \right|$$

(31)

The different values of these statistical indicators of PHC are recorded in Table 9.

Analysis of Table 9 clearly indicates that the set of parameters $(\Delta E,\mu, \sigma)$ remain the most appropriate for describing pyridoxine hydrochloride behavior. In fact, for this parameter set the values for SSE, RMSE, and MPD are the lowest.

Table 9. Different values of Statistical parameters PHC

<table>
<thead>
<tr>
<th>Set of parameters</th>
<th>R^2</th>
<th>SSE</th>
<th>RMSE</th>
<th>MPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(E_{HOMO},E_{LUMO},\Delta E)$</td>
<td>0.979</td>
<td>5.16</td>
<td>0.99</td>
<td>0.0116</td>
</tr>
<tr>
<td>$(\Delta E,\mu, \sigma)$</td>
<td>0.982</td>
<td>3.95</td>
<td>0.98</td>
<td>0.0115</td>
</tr>
<tr>
<td>$(\Delta E,\mu, \eta)$</td>
<td>0.981</td>
<td>6.91</td>
<td>1.02</td>
<td>0.0129</td>
</tr>
<tr>
<td>$(E_{HOMO},\Delta N, \chi)$</td>
<td>0.978</td>
<td>17.49</td>
<td>1.37</td>
<td>0.0234</td>
</tr>
</tbody>
</table>
4. CONCLUSION
Mass loss and theoretical methods shown that pyridoxine hydrochloride has a good performance in inhibiting the corrosion of aluminium in 1M HCl. The inhibition efficiencies are concentration, temperature and immersion time dependent. This inhibitor adsorb on the aluminium surface and protect it from corrosive attack. The mode of adsorption of inhibitor on the metal surface was seen to follow modified Langmuir adsorption isotherm. The thermodynamic adsorption and activation parameters obtained support both physical and chemical adsorption mechanisms. Local reactivity parameters indicate that C(2) and H(17) are the nucleophilic and electrophilic centers of attack respectively. QSPR studies reveal that \((\Delta E, \mu, \sigma)\) is the best set of parameter to correlate experimental and theoretical inhibition efficiencies. The theoretical results were consistent with the experimental data.

DISCLAIMER
The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ACKNOWLEDGEMENTS
The authors gratefully acknowledged the support of Laboratory of Constitution and Reaction of the Matter of Felix Houphouët Boigny University at Abidjan (Côte d’Ivoire).

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES

34. Parr RG, Szentpaly LL, Liu S. Electrophilicity index Journal of the American Chemical society. 1999;121(9):1922-1924

38. Yang W, Mortier WJ. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines

© 2020 Yeo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/62778