Air Pollution Tolerance Indices of Vegetables around Abattoirs within Uyo Municipality, Niger Delta Region of Nigeria

Emmanuel Udo Dan¹, Godwin Asukwo Ebong¹* and Uwemedimo Emmanuel Udo¹

¹Department of Chemistry, University of Uyo, P.M.B. 1017, Uyo, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author EUD designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors GAE and UEU managed the analyses of the study. Authors EUD and GAE managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IRJPAC/2020/v21i830183

Editor(s):
(1) Dr. Farzaneh Mohamadpour, University of Sistan and Baluchestan, Iran.

Reviewers:
(1) S. Muthuramu, Tamil Nadu Agricultural University, India.
(2) Hari Prakash Meena, ICAR-Indian Institute of Oilseeds Research, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/57447

Received 20 March 2020
Accepted 24 May 2020
Published 02 June 2020

ABSTRACT

Four common biochemical constituents of some vegetable leaves sourced from some abattoir waste – impacted soils and a Control within Uyo Metropolis in Niger Delta Region of Nigeria were assessed for their air pollution tolerance capacities using standard analytical protocols. Results indicated varied amounts of biochemical constituents in studied leaves with respect to the different abattoir soils with some constituents showing direct relationship with another. Biochemical constituents analyzed were higher in leaves from the Control soil than in the leaves from the studied abattoir soils except for relative water content. Tolerance levels of the leaves based on Thakar’s and Padmavathi’s categorizations revealed varied tolerance capacities of the tested leaves towards air pollution. Correlation analysis of the biochemical constituents of the studied leaves using Pearsons’ correlation analysis showed variable relationships.

Keywords: Abattoir; abattoir waste-impacted soil; air pollution tolerance index; air pollution; biochemical constituents.

*Corresponding author: E-mail: g_ebong@yahoo.com;
1. INTRODUCTION

Abattoirs are places assigned for the processing of meat and meat products. Abattoir wastes are unwanted materials generated during the processing of meat from slaughtered animals [1]. These abattoir wastes contain various amounts of organic and inorganic substances including toxic metals, faeces, bacteria, cellulose fibre and paunch manure [2]. These wastes are disposed on the soil and water environments around the abattoirs owing to lack of operational regulations concerning wastes disposal and management methods in abattoirs within Nigeria. Consequently, pollutants in these wastes interact with the environment causing different kind of contamination and subsequent pollution depending on the over time. In Uyo, Akwa Ibom State, local farmers usually cultivate these farmlands with vegetables due to their high levels of nutrients needed for plant growth [3]. Depending on some environmental conditions including variations in the species of these vegetables, there exist varied levels of responses of their leaves towards the accumulation of biochemical constituents such as water content, total chlorophyll, ascorbic acid, cellulose, proline, and even hydrogen ions. Several authors have reported on the influences of environmental pollutants on levels of biochemical constituents of plants [4-6]. Variations in biochemical responses of plants usually leads to different capacities in withstanding air pollution occasioned by these environmental pollutants. Changes in any of these biochemical constituents of plants affect their tolerance ability towards air pollution. The use of pH, relative water content, total chlorophyll and ascorbic acid to compute air pollution tolerance indices of leaves have already been reported by Singh et al. [7]. The studied vegetables were chosen since they are common around these abattoirs and are widely consumed in the study area. Thus; their air pollution tolerance indices should be examined to ascertain their suitability for consumption as the air environment around abattoirs are highly contaminated [8].

This work seeks to assess the air pollution tolerance indexes of common vegetable leaves cultivated on abattoir-wastes impacted soils within Uyo Municipality. Thus, the capability of each of the studied vegetables to tolerate air pollutants shall be exposed. The results of this work shall also help in understanding the air pollution status of the studied locations.

2. MATERIALS AND METHODS

2.1 Study Areas

Vegetable leaves were collected at four Abattoirs within Uyo Municipality, Niger Delta Region of Nigeria. The sample locations and their coordinates are presented in Table 1.

2.2 Collection of Vegetable Sample Specimen

Fresh leaves of Telfaira occidentalis (Hook F.), Talinum triangulare (Jacq.), Amaranthus hybridus L., and Ocimum gratissimum L. were collected around the four mentioned abattoirs within Uyo municipality using stainless knife. Samples collection was done in the morning hours between 8:30 am – 9:30 am. Vegetable leaves were also collected from the Botanical Garden of the University of Uyo, Uyo, and used as the Controls. Both the studied leaves and Controls were well labelled, packed into a cooler and taken to the Department of Botany and Ecological Studies, University of Uyo for authentication and specimen referencing before transporting the samples to the laboratory. Voucher specimens have been stored in the Herbarium of the Department of Botany and Ecological Studies, University of Uyo, Uyo, Nigeria.

Table 1. Sample location and coordinates

<table>
<thead>
<tr>
<th>S/N</th>
<th>Location</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Itaam abattoir (ITA)</td>
<td>Lat 50°02' N – 50°03' N and Longitude 70°53' E – 70°54' E</td>
</tr>
<tr>
<td>2</td>
<td>Calabar –Itu abattoir (CIA)</td>
<td>Lat 50°04' N – 50°05' N and Longitude 70°55' E – 70°56' E</td>
</tr>
<tr>
<td>3</td>
<td>Uyo village abattoir (UVA)</td>
<td>Lat 50°03' N – 50°04' N and Longitude 70°56' E – 70°58' E</td>
</tr>
<tr>
<td>4</td>
<td>Uyo-Ik ekpene rd abattoir (UIA)</td>
<td>Lat 50°06' N – 50°08' N and Longitude 70°48' E – 70°49' E</td>
</tr>
<tr>
<td>5</td>
<td>Control (Ctrl)</td>
<td>Lat 50°05' N – 50°06' N and Longitude 70°54' E – 70°55' E</td>
</tr>
<tr>
<td>Scientific name</td>
<td>English name</td>
<td>Ibibio name</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Telfaira occidentalis</td>
<td>Fluted Pumpkin</td>
<td>Ikong Ubong</td>
</tr>
<tr>
<td>Talinum triangulare</td>
<td>Water Leaf</td>
<td>Mmonmong Ikon</td>
</tr>
<tr>
<td>Amaranthus hybridus</td>
<td>African Spinach</td>
<td>Inyang afia</td>
</tr>
<tr>
<td>Ocimum gratissimum</td>
<td>Clove basil</td>
<td>Ntong</td>
</tr>
</tbody>
</table>
2.3 Sample Specimen

The leaves of four (4) vegetables commonly consumed in Akwa Ibom State, Nigeria were used for this study. The vegetables are: *Telfaira occidentalis* (Hook F.), *Talinum triangulare* (Jacq.), *Amaranthus hybridus* L., and *Ocimum gratissimum* L. The Ibibio and English names of the vegetables including their brief descriptions are presented in Table 2.

3. BIOCHEMICAL CONSTITUENTS ANALYSIS OF VEGETABLE LEAVES

3.1 Determination of Relative Water Content

Relative water content (RWC) of vegetable leaves was determined using the method of Singh et al. [7] and Nwaogwugwu et al. [12]. Fresh weight (FW) of the leaves were immersed in distilled water overnight, blotted dry and weighted to obtain the turgid weight (TW). The leaves were dried overnight in an oven at 70°C and reweighed to obtain the dry weight (DW). Relative water content of each leave was calculated using equation (1) below

\[
\text{Relative water content(\%)} = \frac{FW - DW}{TW - DW} \times 100
\]

Where FW = Fresh weight; DW = Dry weight; TW = Turgid weight

3.2 Determination of pH of Leaf Extract

Five (5) grams of each fresh leaf was homogenized in 10 ml distilled water. They resulting mixture was filtered and the pH of the leaf extract was determined using a pH meter after calibration with buffer solution of pH 4 and 9.

3.3 Determination of Total Chlorophyll Content

Chlorophyll contents of the leaves was determined using the method of Mukherjee et al.[13] and Lichtenenthaler [14]. About 1.0 g of each of the fresh leaf was blended with a little quantity of distilled water and extracted with 10 ml of 80% (v/v) acetone and left for 15 minutes. The liquid portion was decanted into another test tube and centrifuged for 3 minutes. The supernatant was collected and 1 ml of the solution was used to determine the amount of chlorophyll. The absorbance of the extract was measured at 663 nm and 645 nm with UV/visible spectrophotometer using cell with 1 cm path against 80% (v/v) acetone blank. The levels of chlorophyll A, B, and total chlorophyll (A + B) in the leaves extracts was calculated using equations (2), (3), and (4), respectively.

\[
\text{Chlorophyll A} \left(\frac{\text{mg}}{g}\right) = \left(\frac{\text{Absorbance} @ 663 \text{ nm} - \text{Absorbance} @ 645 \text{ nm}}{1000W}\right) \times V
\]

(2)

\[
\text{Chlorophyll B} \left(\frac{\text{mg}}{g}\right) = \left(\frac{\text{Absorbance} @ 645 \text{ nm} - \text{Absorbance} @ 663 \text{ nm}}{1000W}\right) \times V
\]

(3)

Total chlorophyll in the leaves extracts=

Chlorophyll A + Chlorophyll B

\[
\text{Total chlorophyll in the leaves extracts}=\text{Chlorophyll A} + \text{Chlorophyll B}
\]

(4)

Where W = Fresh weight of leaf sample taken in grams, and V = Volume of leaf extract.

3.4 Determination of Ascorbic Acid

Concentration of ascorbic acid in leaves was estimated using spectroscopic method. About 1 g of fresh leaf each was placed in a test tube, 4 ml oxalic acid-EDTA extracting solution was added. The resulting solution was then added to 2 ml ammonium molybdate followed by 3 ml distilled water. The resulting mixture was allowed to stand for 15 mins before measuring its absorbance at 760 nm with UV/visible spectrophotometer using cell with 1 cm path length. The concentration of ascorbic acid in the studied leaves was then extrapolated using calibration curve prepared using different concentration of pure ascorbic acid [15].

3.5 Computation of Air Pollution Tolerance Indexes (APTI) of Studied Leaves

Air pollution tolerance indices of studied vegetable leaves were computed using four biochemical constituents of the leaves (relative water content, pH, total chlorophyll content and ascorbic acid) as described in details by Singh et al.[7] using the equation (5) below.

\[
\text{APTI} = [A(T + P)] + \frac{R}{10}
\]

(5)

Where A = Ascorbic acid; T = Average total chlorophyll; P = Leaf extractable pH; R = % Relative water content and 10, a factor to obtain a reasonable value from the aggregate whole.
3.6 Interpretation of Tolerance Levels of Studied Leaves

Tolerance levels of the leaves from each abattoir and the Control were carried out using the APTI values. Two categorizations approach by Thakar and Mishra [16] and Padmavathi et al. [17] were used. In Thakar’s approach, APTI of the studied leaves were compared with mean APTI of all the vegetables alongside with its standard deviation [16], while for the Padmavathi’s approach, APTI values of the leaves were compared to three absolute values [17]. Table 3 summarizes these classifications.

4. RESULTS AND DISCUSSION

4.1 Biochemical Constituents of Studied Vegetables

Results for the relative water content, pH, total chlorophyll and ascorbic acid contents of the four (4) studied vegetable leaves are presented in Table 4.

Based on the results in Table 4, the studied vegetable leaves showed marked variations in biochemical constituents compared to their Controls. There was a significant relationship between constituents, this is an indication of a negative impact of abattoir wastes on the environment.

Results of pH for all the studied vegetables ranged from 4.73 in Ocimum gratissimum at Calabar – Itu Abattoir to 5.84 in Telfaira occidentalis obtained from Uyo – Ikot Ekpene Road Abattoir. The pH reported for the studied vegetables is lower than 8.00 – 8.34 obtained by Sunday et al. [18], but higher than 4.28 – 5.21 reported by Tawo et al. [19]. The pH range of the control vegetables (6.84 – 7.01) was higher than the pH range obtained for the studied leaves. This is consistent with the findings by Zamble et al. [20] and Ogagaoghene [21] in similar studies. The study has also revealed that, the pH of the studied leaves was acidic whereas, the pH range of the Controls ranged from slightly acidic to a neutral pH. The observed variations in pH levels between the studied leaves and their controls could be attributed to the negative impacts of abattoir wastes on the studied environment. The pH of the leaves of the studied vegetables varied as follows: Telfaira occidentalis > Talinum triangulare > Amaranthus hybridus > Ocimum gratissimum. Thus; indicating the highest pH level in the leaves of Telfaira occidentalis and the lowest in Ocimum gratissimum.

Table 3. Classifications of tolerance levels by leaves

<table>
<thead>
<tr>
<th>Tolerance level</th>
<th>Thakar and Mishra’s</th>
<th>Padmavathi’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerant</td>
<td>Leaf APTI value > mean APTI + SD</td>
<td>Leaf APTI value > 17</td>
</tr>
<tr>
<td>Moderate tolerant</td>
<td>Leaf APTI value lies between mean APTI and mean APTI + SD</td>
<td>NA</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Leaf APTI value lies between mean APTI and mean APTI – SD</td>
<td>Leaf APTI value lies between 12 and 16</td>
</tr>
<tr>
<td>Sensitive</td>
<td>Leaf APTI < mean APTI</td>
<td>Leaf APTI < 12</td>
</tr>
</tbody>
</table>

SD = Standard deviation, NA = Not applicable, APTI = Air pollution tolerance index
Table 4. Biochemical constituents of the studied vegetable leaves and their Controls

<table>
<thead>
<tr>
<th></th>
<th>Telfaira occidentalis</th>
<th>Talinum triangulare</th>
<th>Amaranthus hybridus</th>
<th>Ocimum gratissimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH RWC TCh AA</td>
<td>pH RWC TCh AA</td>
<td>pH RWC TCh AA</td>
<td>pH RWC TCh AA</td>
</tr>
<tr>
<td>ITA</td>
<td>5.43 24.43 3.21 6.05</td>
<td>5.62 30.62 2.83 4.02</td>
<td>5.52 16.52 1.98 4.47</td>
<td>5.38 28.46 1.09 4.90</td>
</tr>
<tr>
<td>CIA</td>
<td>4.86 33.40 1.84 3.63</td>
<td>4.93 36.18 1.63 3.43</td>
<td>4.81 22.58 1.28 4.26</td>
<td>4.73 30.05 1.87 5.22</td>
</tr>
<tr>
<td>UVA</td>
<td>5.12 29.41 2.37 4.44</td>
<td>5.24 28.41 3.26 4.16</td>
<td>5.29 27.63 3.64 5.18</td>
<td>5.41 34.63 2.06 5.68</td>
</tr>
<tr>
<td>UIA</td>
<td>5.84 18.64 4.08 6.83</td>
<td>5.76 19.28 4.29 7.64</td>
<td>5.40 18.67 4.07 7.03</td>
<td>5.26 20.18 3.25 8.16</td>
</tr>
<tr>
<td>Min</td>
<td>4.86 18.64 1.84 3.63</td>
<td>4.93 19.28 1.63 3.43</td>
<td>4.81 16.52 1.28 4.26</td>
<td>4.73 20.18 1.09 4.90</td>
</tr>
<tr>
<td>Max</td>
<td>5.84 33.40 4.08 6.05</td>
<td>5.76 36.18 4.29 7.64</td>
<td>5.52 27.63 4.07 7.03</td>
<td>5.41 34.63 3.25 8.16</td>
</tr>
<tr>
<td>Mean</td>
<td>5.31 26.47 2.85 5.24</td>
<td>5.39 28.62 3.00 4.82</td>
<td>5.26 21.35 2.74 5.24</td>
<td>5.19 28.33 2.07 5.99</td>
</tr>
<tr>
<td>SD</td>
<td>0.42 4.38 0.96 1.46</td>
<td>0.37 5.04 0.21 1.05</td>
<td>0.31 2.84 0.36 1.05</td>
<td>0.32 3.03 0.21 1.07</td>
</tr>
<tr>
<td>Ctrl</td>
<td>6.84 10.74 6.21 8.63</td>
<td>6.92 14.15 5.23 13.45</td>
<td>7.01 15.44 5.84 11.04</td>
<td>6.89 11.65 4.96 10.24</td>
</tr>
</tbody>
</table>

RWC – Relative water content, TCh – Total chlorophyll, AA – Ascorbic acid; ITA – Itam Abattoir; CIA- Calabar-itu Abattoir, UVA – Uyo village Road Abattoir, UIA-Uyo Ikot Ekpene Road Abattoir; SD – Standard deviation; Ctrl – Control
The results of the study indicated a high degree of variability in the rate of chlorophyll accumulation among the studied vegetables. The general range for total chlorophyll in the leaves of the studied vegetables varied from 1.09 mg/g fresh weight (FW) in *Ocimum gratissimum* from Itum Abattoir to 4.29 mg/g FW in *Talinum triangulare* obtained from Uyo-Ikot Ekpene Road Abattoir. This range is consistent with 2.70 – 4.25 mg/g obtained by Falusi et al. [27] but lower than 7.00 – 12.25 mg/g reported by Adetuyi et al. [28]. The results indicated a higher range of total chlorophyll (4.96 – 6.21 mg/g) for the leaves from the Control plot. This is similar to the results in studied vegetables and Control by Falusi et al. [27] during their research. This could be attributed to the difference in soil contaminants between the studied soils and Control which might directly affect the rates of photosynthesis and some biochemical constituents of plants [29,30]. The variations of total chlorophyll contents in plant leaves from soils impacted by different pollutants has also been reported by Chauhan and Joshi [31] and Igbal et al. [32]. The total chlorophyll contents of the studied vegetables followed the order: *Talinum triangulare* > *Telfaira occidentalis* > *Amaranthus hybridus* > *Ocimum gratissimum*. Accordingly, for all the vegetable leaves from the studied locations, the highest total chlorophyll content was obtained in *Talinum triangulare* while the lowest was in *Ocimum gratissimum*.

The concentration of ascorbic acid in the leaves of the studied vegetables and their Controls are indicated in Table 4. The overall results revealed a range of 3.43 – 8.16 mg/g FW for ascorbic acid with the highest level in *Ocimum gratissimum* from Uyo – Ikot Ekpene Road Abattoir while the lowest was in *Telfaira occidentalis* collected from Calabar–Itu Abattoir. This range is higher than 0.09 – 0.15 mg/g reported by Agbaire and Esiefarienrhe [33], but lower than 19.32 – 86.51 mg/g obtained by Abdulrazak et al. [34] in their respective studies. The results obtained also revealed a higher range of ascorbic acid (8.63 – 13.45 mg/g) in the Controls than in the studied vegetables. The observed variations between these locations is in agreement with the findings by Tanee and Albert [35]. According to Singh et al. [7], the observation could be as a consequence of some factors such as waste compositions, ecological and environmental factors, and age differences of the leaves. It has also been reported that higher levels of ascorbic acid in plants favours the air pollution tolerance capacity in plants [7]. Reports have shown that acidic nature of pollutants usually lead to a shift in the pH of the cell sap to an acidic zone which eventually causes a decrease in the conversion of hexose sugar to ascorbic acid in plants [36]. Hence, the pH of the studied vegetables indicated a direct relationship with the ascorbic acid and total chlorophyll contents of the plants. The pH levels of the studied vegetables were higher than 3.5 and this results in the super radicals undergoing dismutation to hydrogen peroxide with ascorbic acid protecting the chlorophyll from possible damage that would have been induced by the peroxide. Thus, the observed direct relationship between ascorbic acid and total chlorophyll contents in leaves of the studied vegetable [37].

4.2 Air Pollution Tolerance Indexes of Studied Leaves

To assess the capacity of vegetable leaves from abattoir soils within Uyo Municipality, Niger Delta Region of Nigeria to withstand and battle against air pollution that may have been occasioned by the discharged of abattoir wastes on soils, air pollution tolerance index (APTI) of the leaves were computed and the results are presented in Table 5. The results presented in Table 5 indicate significant variations in APTI values of studied leaves. Generally, the APTI for the studied leaves varied between 12.53 in *Amaranthus hybridus* from Calabar – Itu Road Abattoir and 40.46 in *Talinum triangulare* at Uyo-Ikot Ekpene Road Abattoir. This range is consistent with those reported by Legheri et al. [38] and Lohe et al. [39]. However, APTI values in the leaves from the Control plot ranged from 58.85 in *Ocimum gratissimum* to 78.68 in *Talinum triangulare*. Consequently, the APTI values in leaves from the Control plot were higher than those obtained in the leaves of the studied vegetables. This is in agreement with the results obtained by Lohe et al. [39]. The observed variations could be
Table 5. Tolerance levels of the studied leaves from the different abattoirs and control.

<table>
<thead>
<tr>
<th></th>
<th>Telfaira occidentalis</th>
<th>Talinum triangulare</th>
<th>Amaranthus hybridus</th>
<th>Ocimum gratissimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITA</td>
<td>Class of tolerance PA</td>
<td>TMA Tolerant</td>
<td>TMA Sensitive</td>
<td>TMA Sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.50</td>
<td>20.09</td>
<td>16.02</td>
</tr>
<tr>
<td>CIA</td>
<td>Class of tolerance PA</td>
<td>TMA Tolerant</td>
<td>TMA Sensitive</td>
<td>TMA Sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.50</td>
<td>20.09</td>
<td>16.02</td>
</tr>
<tr>
<td>UVA</td>
<td>Class of tolerance PA</td>
<td>TMA Intermediate</td>
<td>TMA Intermediate</td>
<td>TMA Intermediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.58</td>
<td>21.64</td>
<td>26.91</td>
</tr>
<tr>
<td>UIA</td>
<td>Class of tolerance PA</td>
<td>TMA Sensitive</td>
<td>TMA Sensitive</td>
<td>TMA Sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.57</td>
<td>40.46</td>
<td>35.88</td>
</tr>
<tr>
<td>CTRL</td>
<td>Class of tolerance PA</td>
<td>TMA Tolerant</td>
<td>TMA Sensitive</td>
<td>TMA Sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.50</td>
<td>78.68</td>
<td>73.02</td>
</tr>
</tbody>
</table>

ITA = Itam Abattoir; CIA = Calabar-Itu Abattoir, UVA = Uyo village Road Abattoir, UIA = Uyo Ikot Ekpene Road Abattoir; CTRL = Control; APTI = Air pollution tolerance index; TMA = Thakars’ & Mishra’s Approach; PA = Padmavathi’s Approach.

Tolerant plant species. Based on this approach, all the studied vegetable leaves except *Ocimum gratissimum* from Itam Abattoir, and *Telfaira occidentalis*, *Talinum triangulare* and *Amaranthus hybridus* from Calabar – Itu Abattoir were tolerant to air pollution because their APTI values were greater than 17 [12]. The study has shown some variations in the tolerance potential of some of the studied vegetables as a consequence of difference in the classification methods as reported by Uka et al. [25]. Based on Padmavathi’s Approach, all the studied vegetables except *Ocimum gratissimum* from Itam, and *Telfaira occidentalis*, *Talinum triangulare* and *Amaranthus hybridus* from Calabar – Itu abattoir could be exploited in mitigating air pollution. Whereas, vegetables showing intermediate tolerant could be used as biomarkers of air pollution [41]. All the studied vegetable leaves from the abattoirs except *Ocimum gratissimum* from Itam, and *Telfaira occidentalis*, *Talinum triangulare* and *Amaranthus hybridus* from Calabar – Itu abattoir can be regarded as tolerant vegetables based on Padmavathi’s approach and can be exploited in mitigating pollution in the studied areas, while vegetable leaves showing intermediate tolerant can be used as biomarkers of air pollution [41]. Based on Thakar and Padmavathi’s Approaches, vegetables from Itam, Calabar- Itu, and Uyo – village Road Abattoirs except *Telfaira occidentalis* from Itam should be used as air pollution indicators for air pollution monitoring.

Hence, they are more likely to be adversely attributed to the disparity in the biochemical constituents of the leaves from the studied abattoirs and the Control plot. This result has also indicated that *Talinum triangulare* had relatively high APTI values at both the studied abattoir soils and Control.

4.3 Categorization of Air Pollution Tolerances of Studied Leaves

To determine the tolerance capacities of studied vegetable leaves from abattoirs and Control soils, two approaches namely Thakar’s and Padmavathi’s were used as reported by Uka et al. [25]. Based on Thakar and Mishra’s Approach, vegetable leaves from Itam, Calabar – Itu road, and Uyo – Village road abattoirs except *Telfaira occidentalis* from Itam abattoir recorded APTI values lower than the mean APTI (32.63). This is an indication that these vegetables were sensitive to air pollution caused by the waste products generated at these abattoirs. Nevertheless, vegetable leaves obtained from Uyo-Ikot Ekpene Road Abattoir and Control were tolerant to air pollution as their individual APTI value was higher than the mean APTI value of the studied leaves. Literature has shown that Thakar and Mishra’s Approach is effective in identifying comparative tolerant species by comparing the tolerance grade between plants under same environment disregarding how tolerant the studied species is [40]. Padmavathi’s approach as opposed to Thakar’s uses only three absolute APTI value in the selection of true
affected by air pollutants from wastes generated from these abattoirs since they are less resistance to air pollution [42].

4.4 Correlation Coefficient between Biochemical Constituents in the Studied Leaves

Results in Table 6 show the Pearson's correlation matrix of the biochemical constituents determined in the studied leaves.

Table 6. Pearson's correlation coefficients for the biochemical constituents in the studied leaves

<table>
<thead>
<tr>
<th>Variables</th>
<th>pH</th>
<th>RWC</th>
<th>TCh</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWC</td>
<td>-0.868*</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCh</td>
<td>0.987*</td>
<td>-0.842*</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>0.996*</td>
<td>-0.746**</td>
<td>0.997*</td>
<td>1.000</td>
</tr>
</tbody>
</table>

*Correlation is significant at the 0.05; **Correlation is significant at the 0.010 level (2 tailed); RWC – relative water content; TCh – total chlorophyll; AA – ascorbic acid

The results in Table 6 indicate significant negative correlation for pH and relative water content with r value of -0.868 at P < 0.05. Whereas, pH correlated with total chlorophyll and ascorbic acid of the studied leaves positively and significantly with r values of 0.987 and 0.996, respectively at P < 0.05. Accordingly, the level of pH in the studied leaves might have been inversely proportional to those of relative water contents but directly proportional to the levels of total chlorophyll and ascorbic acid. Consequently, higher level of pH in the studied leaves may result in a corresponding decrease in the relative water contents but increase in both total chlorophyll and ascorbic acid. However, this could be altered by the environmental factors and other biochemical compositions of the plants. The results have also shown that relative water contents of the studied leaves correlated negatively and significantly with total chlorophyll and ascorbic acid with r values of -0.842 and -0.746 at P < 0.05 and 0.10, respectively. Thus, higher levels of relative water contents might result in a significant decrease in total chlorophyll and ascorbic acid and vice versa. Total chlorophyll contents of the studied leaves showed a strong positive relationship with ascorbic acid. Hence, an increase in total chlorophyll contents of the studied leaves could result in a corresponding increase in ascorbic acid and vice versa. The observed strong positive correlations of the biochemical constituents of the studied leaves could also be an indication of their common source [43,44].

5. CONCLUSION

Vegetable leaves from some abattoirs within Uyo Municipality accumulated varying amounts of biochemical constituents as a result of differences in the rate in which some physiological processes occur including varietal differences of the studied plants. The differences in amounts of biochemical constituents leads to differences in tolerance capacities levels of studied leaves towards air pollution. Air pollution tolerance indices of all the leaves from Uyo – Ikot Ekpene abattoirs and the Control indicated that the leaves were tolerant to air pollution, while leaves from other studied abattoirs were sensitive based on Thakar's approach. This means that the vegetable leaves might have been affected by air pollution from abattoir wastes deposition on the soils. In terms of Padmavathi's approach, the studied leaves from all the locations and the Control were tolerant to air pollution although, some indicated moderate tolerance levels. However, routine assessment of vegetable leaves and other plants in these locations to monitor the changes in biochemical constituents is encouraged. The outcome could be useful in identifying effective bio-indicators plants for estimating air pollution status of an area and the tolerance level of these plants in a contaminated/polluted environment.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

27. Falusi BM, Odedokun OA, Abubakar AA, Agoh A. Effect of dumpsite air pollution on...

41. Singh SK, Rao DN. Evaluation of the plants for their tolerance to air pollution proc-symp of air pollution control held at IIT, Delhi, 1983;218–224.

