ABSTRACT

Foxtail millet has been consumed similar to rice from times immemorial and many products like soups, vermicelli, pasta and malt mixes were done in recent times to increase the nutrient content of various food products. Due to climate changes, millet usage is increasing nowadays as they require less irrigation and can grow in arid and semi-arid region to achieve nutrition security. The present research was carried out at Post Graduate & Research Centre, PJTSAU, Rajendranagar, Hyderabad using malted foxtail millet to increase the carbohydrates, energy, vitamin C, bioavailability of protein and other nutrients. Malt mix were prepared from germinated malt foxtail millet, roasted bengal gram and milk powder in five different formulations. Sensory evaluation was done using 9-point hedonic scale for selection of best accepted and it was found that germinated foxtail to roasted bengal gram dal in the ratio of 2:1 was best accepted. This malt mix along with...
control germinated foxtail was further analysed for proximate composition and vitamin C content. The selected composite's moisture, ash, fat, protein and crude fibre content were higher for test foxtail millet mix whereas carbohydrates, energy and vitamin C were high for control foxtail millet mix. The lower carbohydrate and energy content as well as higher protein and crude fiber level in the test foxtail millet mix makes it an ideal supplementary food with dense nutrients for children between 1 – 3 years of age. The development of malt mix was carried out for a period of six month including the period of standardization of germination conditions for foxtail millet.

Keywords: Malt mix; germinated foxtail millet; energy dense supplementary food; preschool children.

1. INTRODUCTION

Foxtail millet (Setaria italica (L.) P. Beauvois) is known as a native of China and is one of the world's oldest cultivated crops. It ranks second in the total world production of millets and continues to have an important place in the world agriculture providing approximately six million tons of food to millions of people, mainly on poor or marginal soils in southern Europe and in temperate, subtropical and tropical Asia. It usually grows in altitudes from sea level to 2000 m, cannot tolerate water logging, is fairly tolerant of drought and can escape some droughts because of early maturity. Due to its quick growth grown as a short-term catch crop and well adapted to a wide range of elevations, soils and temperatures. Its grain is used for human consumption and as feed for poultry and cage birds [1].

The whole grains and millets are inversely linked to body mass index, waist circumference, total cholesterol, and metabolic syndrome, mortality from cardiovascular diseases, insulin resistance and type 2 diabetes and are nutritionally superior to polished rice [2].

Plants have been a source of nutraceutical and functional foods from ancient times due to their bioactive compounds consisting of essential oils and antioxidants responsible for their healing properties [3].

Germination or malting result in some biochemical modification like increase in free amino acids and total sugars and decrease in dry weight and starch content, as well as improved protein quality. Processings like germination, soaking, debraning and dry heating reduce antinutrients like phytic acid, tannins, and polyphenols that usually interact with proteins to form complexes [4].

Traditionally, millets were processed either by malting or fermentation. The malted and fermented flours were extensively used in preparation of weaning foods, instant mixes, beverages and pharmaceutical products [5].

Germination is an inexpensive and effective method for improving the overall nutritional quality of food grains by enhancing their digestibility and reducing the contents of anti-nutritional factors [6].

Germination of millet grains increased the protein, ash, iron, calcium and phosphorus level of malted mixes developed. The use of locally available low-cost ingredients available in developing countries has great potential for producing highly nutritious, acceptable and dense foods. The addition of malt to foods improved their functional and nutritional qualities and can help in eradication of low birth weight [7].

Roasting helps in the formation of desired flavour, and the quality and it improves the flavour, brown colour, texture and overall acceptability of the product [8,9]. Development of roasted flavour and aroma depends upon the temperature and time of roasting. Roasting results in lipid damaged due to oxidation reaction but the damage is less due to the presence of antioxidants like tocopherol and polyphenols that play major role for protection against fat deterioration [10].

Malted health food drink is among best substitute of a complete food. India is the world's largest malt bases drinks market accounts for 22% of the world's retail volume sales. Malted drinks are traditionally consumed as milk substitutes and also available in mixed with water and marketed as nutritious drinks mainly consumed by the old, the young and the sick persons. Malt is germinated cereal grains that have been dried in a process known as malting. The grains are made to germinate by soaking in water, and are then halted from germinating further by drying with hot air [11].
Children develop malnutrition at critical period coincide with the introduction of complementary foods, which are nutritionally inadequate in many developing countries [12]. The multi-nutrient food mix was prepared from locally available raw material like course cereals, millets, soya bean and dairy products as the need of the hour is for nutritionally balanced, energy dense, easily digestible foods with functional benefits and cost effectiveness [13].

The present investigation was taken with the aim to develop an energy dense malt mix using germinated foxtail millets for children below 3 years of age.

2. MATERIALS AND METHODS

2.1 Procurement of Raw Materials

Foxtail millet was obtained from Agricultural College, PJTSAU, Polasa, Jagtial. The other ingredients like roasted bengal gram dal, milk powder and sugar were procured from local market of Hyderabad. The glassware and equipment were from Post Graduate & Research Centre, PJTSAU, Rajendranagar, Hyderabad.

The composite of five malt mixes were prepared as porridges using mixture of 20 g each to which 10 g sugar and 100 ml water were added and cooked for 4 to 5 minutes and the cooked malt mix weight was 85 g. Sensory analysis of germinated foxtail malt mix items was carried out by fifteen semi-trained panellists using 9-point hedonic scale and were scored for colour, consistency, taste, after taste, flavour, appearance and overall acceptability [14]. Proximate analysis of malt mixes was carried as per given below:

2.1.1 Moisture

The empty petridish with lid was weighed into which 2 g of powdered foxtail malt mix was weighed and spread evenly for uniform drying at 105°C in hot air oven for 2 hours with open lid. The petridish was transferred to a desiccator for cooling weighed. This was repeated for all the samples till constant weight was achieved [15].

\[
\text{Moisture} (\%) = \frac{(W_2 - W_1) - (W_3 - W_1)}{(W_2 - W_1)} \times 100 \\
\]

where,

\[
W_1 = \text{Initial weight of petridish (g)} \\
W_2 = \text{Weight of the petridish with sample before drying (g)} \\
W_3 = \text{Weight of the petridish with sample after drying (g)} \\
\]

2.1.2 Ash

The temperature of the muffle furnace was set to 600°C in which empty crucibles were heated for 1 hour, cooled and weighed (\(W_1\)). To the weighed crucibles, 2 g of foxtail malt mix was taken and weight noted (\(W_2\)). The sample was kept on flame for charring to remove the organic matter and then incinerated at 600°C for 3 hours in muffle furnace. After complete ashing of the sample, crucible was transferred into the desiccator, cooled and weighed (\(W_3\)) and incineration was repeated until constant weight was obtained for the samples [16].

\[
\text{Ash} (\%) = \frac{[\text{Weight of the ash (W3-W1)}]}{\text{Weight of the sample taken (W2-W1)}} \times 100
\]

2.1.3 Protein

Powdered foxtail malt mix of 0.5 g was weighed into digestion tubes and 5.0 g of digestion mixture of potassium sulphate and copper sulphate plus 10.0 ml of concentrated \(\text{H}_2\text{SO}_4\) were carefully added. The samples were placed in the digestion unit for 1½ hours at 375°C. In a 100.0 ml conical flask, 40.0 ml of 4% boric acid was added along with few drops of mixed indicator. Distillation was done for 10 minutes in the Kjeldahl distillation apparatus adding 10.0 ml of distilled water, 15.0 ml of 40% \(\text{NaOH}\) and steaming for 10 seconds. The contents collected in conical flask was blue in color after distillation. Titration was done using standard 0.1 N HCl till the contents of the flask turned to pink colour. A blank was run simultaneously [17].

\[
\text{Protein} (\%) = \frac{[\text{Sample TV} - \text{blank TV}]}{0.014 \times 0.1\text{N of HCl} \times 6.25} \times \text{Weight of the sample (g)} \times 100
\]

2.1.4 Fat

The extraction beaker was cleaned, dried for an hour at 105°C in the drying chamber and was cooled off in the desiccator to room temperature. The empty beaker was weighed (\(W_1\)). 2.0 g of powdered foxtail malt mix was weighed into thimbles, plugged with fat-free cotton, inserted into the thimble holders and put into the beakers. Around 150.0 ml of petroleum benzene (60-80°C B.P.) solvent was added and the weighed extraction beaker with samples were kept into the Soxtherm instrument to fit properly to the
sealing rings of the PTFE cylinders to avoid any leakage of solvent and extracted for one and half hour. Petroleum benzene was evaporated in the apparatus and the flasks were dried with the residue in the hot air oven at 100°C for 1 hour, cooled in a desiccator and weighed (W₂) [18].

Fat content (%) = \(\frac{W₂ - W₁}{\text{sample weight in g}} \times 100 \)

2.1.5 Crude fibre

1 g of moisture and fat free powdered sample was weighed (W₀) and placed in the fibre bags. The glass spacer was kept into the bags and bags were loaded in the sample carousel. The sample carousel was put into the glass container carefully and added with 500 ml of 1.25% dilute H₂SO₄ and the glass container axial was heated for 30 min. After completion of the time, the bags were washed by boiling with 500 ml distilled water for 30 min and then 500 ml of 1.25% NaOH was added and left for another 30 min for heating. Later again 500 ml distilled water was added and boiled for further 30 min. The residue was transferred to empty crucible and weighed as W₁, then dried at 100°C for 4 hours in hot air oven, transferred to desiccator for cooling and weighed (W₂). The crude was incinerated in a muffle furnace at 600°C for 3 hrs. Then crude was cooled in desiccator and weighed (W₃) [19].

Crude fibre = \(\frac{W₂ - W₃}{W₀} \times 100 \)

2.1.6 Computation of Carbohydrates

Carbohydrate content was computed by subtracting the total of moisture, protein, fat, ash and crude fiber from 100 [20].

Carbohydrate (g) = 100 – (moisture + protein + fat + ash + crude fiber)

2.1.7 Computation of Energy

Energy content was computed by multiplying protein, fat and carbohydrate values obtained from analysis by 4, 9 and 4 respectively and expressed as Kcal / 100 g [20].

Energy (Kcal) = (Protein×4) + (Fat×9) + (Carbohydrates×4)

2.1.8 Vitamin C

5.0 ml of working standard solution was pipetted out into a 100 ml conical flask. 10.0 ml of 4% oxalic acid was added and titrated against the dye solution (V₂ ml). The end point was the appearance of pink colour which persists few minutes. The amount of the dye consumed is equivalent to the amount of ascorbic acid present in the sample. 5.0 g foxtail malt mix sample was extracted in 4% oxalic acid and made up to a known volume 100ml in a standard flask and centrifuged. 5.0 ml of this supernatant was pipetted, added with 10.0 ml of 4% oxalic acid and titrated against the dye (V₂ ml) [21].

Amount of ascorbic acid (mg/100g) = \(\frac{0.5}{V₁} \times \frac{V₂}{5\text{ml}} \times \frac{100\text{ ml}}{\text{wt. of sample (g)}} \times 100 \)

3. RESULTS AND DISCUSSION

Malt mix composite of different formulation of germinated, dehulled and roasted malt along with roasted Bengal gram dal and milk powder in different ratio proportion were prepared as given in Table 1 below:

3.1 Sensory Evaluation of Malt Mix

The composite of five malt mixes prepared as porridges were subjected to sensory evaluation and the results were as given in Fig. 1.

The best score for colour malt mix was given to FMM4 with 8.00±0.21 followed by FMM1 7.85±0.25. The best consistency was for FMM4 with 7.85±0.25 followed by FMM1 with 7.45±0.27. Taste which score highest was FMM1 7.65±0.29 and next was FMM4 7.55±0.23. The product as malted foxtail was leaving an aftertaste. The best scores for aftertaste were FMM1 followed by FMM4 with 7.65±0.26 and 7.45±0.22 respectively. The best flavour acceptance was also for FMM1 followed by FMM4 with 7.80±0.22 and 7.65±0.22 respectively.

The best acceptance for appearance was for FMM1 and FMM3 respectively with score of 7.80±0.20 and 7.80±0.21 for both of them, followed by FMM4 with 7.65±0.23. Overall acceptability was highest for FMM1 with score 7.95±0.22 followed by FMM3 and FMM4 with same score of 7.60±0.21 and 7.60±0.23. All the sensory parameters were high for FMM1 and FMM4 and hence were selected for malt mix analysis.

3.2 Selection of Best Ready Mix

FMM1 is foxtail millet without addition of Bengal gram dal was taken as control whereas FMM4 is foxtail to Bengal gram dal in 2:1 ratio was selected as best test sample based on the sensory scores given in Fig. 1.
Table 1. Compositions of malt mix

<table>
<thead>
<tr>
<th>Malt mix combinations</th>
<th>Foxtail millet flour (g)</th>
<th>Roasted bengal gram flour (g)</th>
<th>Milk powder (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMM1</td>
<td>95.00</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td>FMM2</td>
<td>-</td>
<td>95.00</td>
<td>5.00</td>
</tr>
<tr>
<td>FMM3</td>
<td>47.50</td>
<td>47.50</td>
<td>5.00</td>
</tr>
<tr>
<td>FMM4</td>
<td>63.50</td>
<td>31.50</td>
<td>5.00</td>
</tr>
<tr>
<td>FMM5</td>
<td>31.50</td>
<td>63.50</td>
<td>5.00</td>
</tr>
</tbody>
</table>

FMM1 - Malt mix formulation; FMM2 - Malt mix formulation; FMM3 - Malt mix formulation; FMM4 - Malt mix formulation; FMM5 - Malt mix formulation

3.3 Analysis of best ready mix

Porridges prepared with developed ready mix and sensory evaluation was carried out and the best composition of ready mix was analysed for its proximate parameters for moisture, ash, protein, fat, crude fibre and vitamin C. Along with these analyses, carbohydrate content and energy were calculated and all of them were tabulated in Table 2 below.

The moisture, ash, fat, protein, crude fibre and carbohydrate content of CFMM was 6.66±0.16, 2.47±0.00, 2.50±0.00, 10.36±0.06, 0.39±0.00 and 76.40±1.10 % respectively and that of TFMM was 7.83±0.16, 2.65±0.15, 3.95±0.29, 12.58±0.14, 0.63±0.03 and 72.34±0.20 % respectively. The energy content of CFMM and TFMM were calculated to be 396.6±4.50 and 375.30±2.70 KCal / 100g whereas vitamin C content was 5.75±0.19 and 4.40±0.19 mg/100g respectively. The lowered vitamin C content in the test sample was due to reduced amount of germinated foxtail millet in comparison with control.

Malted finger millet contained protein, crude fibre and ash content of 10.65±0.12, 0.4±0.15 and 1.31±0.17 % respectively [22]. The malt mix of foxtail millet, wheat and chickpea prepared by steeping for 24 hours and germinated for 48 hours in proportions of 40:30:30 were rich in protein and carbohydrates. The maximum carbohydrates in foxtail millet flour was 58.64% and protein was 11.16% [23]. These results were more or less similar to results reported in Table 3.

The malt mix was developed for pre-school children of age group 1-3 years and RDA as per ICMR, (2010) showed the energy requirement as 1060 Kcal/day, protein is 16.7 g/day, fat is 27 g/day and vitamin C is 40 mg/day. The control of 85g contained fat 2.12 g, protein...
Table 2. Nutritive value for selected ready to cook malt mix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture (%)</th>
<th>Ash (%)</th>
<th>Fat (%)</th>
<th>Protein (%)</th>
<th>Crude fibre (%)</th>
<th>Carbohydrates (%)</th>
<th>Energy (Kcal/100g)</th>
<th>Vitamin C (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFMM</td>
<td>6.66±0.16</td>
<td>2.47±0.00</td>
<td>2.50±0.00</td>
<td>10.36±0.06</td>
<td>0.39±0.00</td>
<td>76.40±1.10</td>
<td>396.60±4.50</td>
<td>5.75±0.19</td>
</tr>
<tr>
<td>TFMM</td>
<td>7.83±0.16</td>
<td>2.65±0.15</td>
<td>3.95±0.29</td>
<td>12.58±0.14</td>
<td>0.63±0.03</td>
<td>72.34±0.20</td>
<td>375.30±2.70</td>
<td>4.40±0.19</td>
</tr>
<tr>
<td>Mean</td>
<td>7.25</td>
<td>2.56</td>
<td>3.22</td>
<td>11.47</td>
<td>0.51</td>
<td>74.37</td>
<td>372.40</td>
<td>5.07</td>
</tr>
<tr>
<td>SE of mean</td>
<td>0.28</td>
<td>0.08</td>
<td>0.34</td>
<td>0.50</td>
<td>0.05</td>
<td>1.03</td>
<td>2.66</td>
<td>0.32</td>
</tr>
<tr>
<td>CD</td>
<td>0.71</td>
<td>0.67</td>
<td>1.26</td>
<td>0.33</td>
<td>0.14</td>
<td>4.90</td>
<td>29.75</td>
<td>1.67</td>
</tr>
<tr>
<td>CV%</td>
<td>2.81</td>
<td>7.48</td>
<td>11.12</td>
<td>0.83</td>
<td>0.88</td>
<td>1.87</td>
<td>2.27</td>
<td>9.40</td>
</tr>
</tbody>
</table>

Note: Values are expressed as mean ± standard deviation of three determinations; Means within the same column followed by a common letter do not significantly differ at p<0.05; CFMM- Control foxtail malt mix; TFMM- Test foxtail malt mix

Table 3. Nutritive value for selected ready to cook malt mix for serve size

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture (g)</th>
<th>Ash (g)</th>
<th>Fat (g)</th>
<th>Protein (g)</th>
<th>Crude fibre (g)</th>
<th>Carbohydrates (g)</th>
<th>Energy (Kcal)</th>
<th>Vitamin C (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFMM</td>
<td>5.66</td>
<td>2.09</td>
<td>2.12</td>
<td>8.80</td>
<td>0.33</td>
<td>64.94</td>
<td>337.11</td>
<td>4.88</td>
</tr>
<tr>
<td>TFMM</td>
<td>6.65</td>
<td>2.25</td>
<td>3.35</td>
<td>10.69</td>
<td>0.53</td>
<td>61.48</td>
<td>319.00</td>
<td>3.74</td>
</tr>
<tr>
<td>Mean</td>
<td>6.15</td>
<td>2.17</td>
<td>2.73</td>
<td>9.74</td>
<td>0.43</td>
<td>63.21</td>
<td>328.05</td>
<td>4.31</td>
</tr>
</tbody>
</table>

* Values were calculated and expressed for 85g of cooked CFMM and TFMM
Fat, protein and crude fibre were higher for test sample than control while carbohydrates, energy and vitamin C were higher for control. The fat, protein, energy and vitamin C content of control was meeting about 7.85, 52.69, 31.80 and 12.20 % respectively of the RDA requirement of preschool children of age group 1-3 years whereas test sample was meeting 12.40, 64.01, 30.09 and 9.39 % respectively.

The difference percentage change between two malt mix CFMM and TFMM for moisture, ash, fat, protein, crude fibre, carbohydrate, energy and vitamin C was found to be 17.57, 7.29, 58, 21.43, 61.54, 5.31, 5.37 and 23.47 % respectively as shown in Fig. 2. There was an increase in the moisture, ash, fat, protein, crude fibre and carbohydrate content for TFMM whereas energy, and vitamin C decreased.

Research studies showed that the fat level decreases during germination due to increased activity of the lipolytic enzyme during germination [24]. The fat content was found to be reduced on malting and twice as much reduction in energy content [23]. There can be a decrease in carbohydrate level due to germination and fermentation because of increased α-amylase activity [25].

The Bengal gram dal composition of moisture, protein, fat, crude fibre and carbohydrates were 10.9, 24.0, 1.4, 0.0, 59.6% and energy was 347.0 Kcal/100g respectively. Legumes are known to reduce the risk of cardiovascular disease, few types of cancers of colon, breast and prostate along with helping in managing body weight due to its satiety value [26]. Hence, inclusion of Bengal gram dhal can improve the nutrient content of this malt mix.

4. CONCLUSION

Among the five malt mix composite prepared, FMM1 and FMM4 had the best sensory scores for colour, consistency, taste, after taste, flavour, appearance and overall acceptability. Proximate analysis was carried out for selected composite and moisture, ash, fat, protein and crude fibre content were high for TFMM whereas carbohydrates, energy and Vitamin C were high for CFMM. So, the incorporation of roasted
Bengal gram with germinated foxtail millet were more beneficial than germinated foxtail millet alone on nutritious basis in preparation of malt mixes.

ACKNOWLEDGEMENT

The authors thank honorable Vice Chancellor of Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad for his encouragement to carry out this research work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

18. AOAC. Official Methods of Analysis for fat (crude) or ether extract in flour. Association of Official Analytical Chemists.

25. Lasekan OO. Effect of germination on α-amylase activities and rheological properties of sorghum (Sorghum bicolor) and acha (Digitaria exilis) grains. Journal of Food Science and Technology. 1996;33: 329-331.